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Plane Wave Reflection and Transmission from Uni- and Bi-
Axial Chiral Slabs 
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Abstract: In this paper, the propagation of electromagnetic waves through an infinite slab 
of uni- or bi- axial chiral medium is analytically formulated for an arbitrary incidence using 
4×4 matrix method. In this powerful method, a state vector differential equation is extracted 
whose solution is given in terms of a transition matrix relating the tangential components of 
electric and magnetic fields at the input and output planes of the uni- or bi- axial chiral 
layer. The formulas of the reflection and transmission are then derived. Also, the presented 
method is verified by some typical examples and the results are compared with the results 
obtained by the other available methods. 
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1 Introduction1 
Unlike the ordinary materials, described by electric 
permittivity and magnetic permeability, chiral media 
include a magneto-electric coupling yielding to 
interesting properties of the electromagnetic fields [1]. 
Interaction of electromagnetic fields with chiral media 
has been the subject of many studies over the past 
decade [2-11] and has led to the introduction of its wide 
application in different microwave devices such as 
linear and circular polarization rotators [12-14], 
microwave absorbers [15], waveguides [16-20], 
focusing [21], cloaking [22], and circularly polarized 
antennas [23]. 

Chiral and Tellegen materials are both subclasses of 
a more general material, which is called bi-isotropic 
material. A bi-isotropic material is characterized by four 
parameters: permittivity (ε), permeability (µ), chirality 
parameter (κ), and Tellegen parameter (χ); and its 
constitutive relations are as follows: 

0 0( ) ,jε χ κ ε μ= + −D E H  
(1) 

0 0( )jχ κ ε μ μ= + +B E H  

With different values of these parameters, the 
general bi-isotropic material can be divided into four 
sub-class materials, which are shown in Table 1. 
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Table 1 Classification of bi-isotropic media. 

 nonchiral (κ = 0) chiral (κ ≠ 0) 

reciprocal (χ = 0) Simple isotropic 
medium 

Pasteur (or chiral) 
medium 

nonreciprocal (χ ≠ 0) Tellegen medium General bi-isotropic 
medium 

 
 

The uniaxial bianisotropic chiral medium is a special 
type of bi-anisotropic media where the chirality appears 
only in one direction [1, 24]. A uniaxial bianisotropic 
chiral slab can be realized by placing parallel miniature 
wire spirals mixed in a host dielectric slab [1]. 
Similarly, the biaxial bianisotropic chiral medium is a 
special type of bianisotropic media where the chirality 
appears in two directions. One of the well-known 
applications of the uniaxial chiral medium is in 
polarization transformers, whereby any polarization can 
be transformed to any other polarization [25]. In fact, 
the ellipticity and handedness of the propagating wave 
in a uniaxial bianisotropic chiral slab can be changed 
which makes it possible to design a simple polarization 
transformer. 

The reflection and transmission properties of a plane 
wave which is incident normally or obliquely from free 
space to a uniaxial chiral slab have been well studied 
over the years [26-28]. In previous works, electric and 
magnetic field equations are written for the uniaxial 
bianisotropic chiral region and then with determining 
eigen-polarizations of this layer, boundary conditions 
are considered at two interfaces. This paper presents the 
powerful 4×4 matrix method. In this method, Maxwell’s 
equations in the uni- or biaxial chiral region are only 
cast into a 4×4 matrix formulation, and it is not 
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necessary to specify the unintelligible eigen-
polarizations of this layer. Then, the complete solution 
is derived by combining boundary conditions at the 
interfaces with the transition matrix. 

The paper is organized as follows: In Section 2, the 
differential equations describing the uni- and biaxial 
bianisotropic chiral slab are extracted, and then the 
formulas of the reflection and transmission are derived. 
In Section 3, the validation of the presented method is 
discussed along with example calculations. 
 
2 General Formulations 

The problem geometry is shown in Fig. 1. Consider 
a uniaxial or biaxial chiral slab which is confined 
between two infinitely extended planes, z = 0 and z = t, 
and placed in free space. The constitutive relations in 
such a reciprocal biaxial chiral medium can be written 
as: 

0 0
ˆˆ ˆˆ ˆˆ . ( ).ˆˆ ˆˆx y zxx yy zz j xx zzε ε ε κ ε μ= + + − +⎡ ⎤⎣ ⎦D E H

(2)
0 0

ˆˆ ˆˆˆˆ ˆˆ ˆˆ. ( ).x y zzz yy zz j xx zzμ μ μ κ ε μ= + + + +⎡ ⎤⎣ ⎦B H E

where E, D, H, and B are the electric field, electric flux 
density, magnetic field, and magnetic flux density, 

respectively. In Eq. (2), κ is the chirality parameter, and 
ε0 and μ0 are permittivity and permeability of free space. 
Clearly, in uniaxial chiral slab shown in Fig. 1(a), the 
chirality in the x direction is disappeared. 

It is assumed that an arbitrarily polarized plane wave 
is incident from free space to the biaxial chiral slab at an 
oblique angle θ0. Substituting the constitutive equations 
into Maxwell’s equations, considering ∂/∂y = 0 

 
and 

∂/∂x = -jk0 sin(θ0) = -jkx where k0 is the wave number in 
vacuum, the differential equations describing biaxial 
chiral layer are given by 

x
x z y y

E
jk E j H

z
ωμ

∂
= − −

∂
                                      (3) 

y
x x x

E
E j H

z c
ωκ

ωμ
∂

− = −
∂

                                     (4) 

x y z z zjk E E j H
c
ωκ

ωμ− = −                                   (5) 

x
y y x z

H
j E jk H

z
ωε

∂
= −

∂
                                          (6) 

y
x x x

H
j E H

z c
ωκ

ωε
∂

− = +
∂

                                     (7) 

x y z z zjk H j E H
c
ωκ

ωε− = +                                    (8) 

By eliminating Ez and Hz from these equations, one 
can write: 

ΓT T

T T

d
dz

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

E E
H H

                                                    (9) 

where ET = (Ex , Ey) and HT = (Hx , Hy) are the 
transverse components of electric and magnetic fields, 
respectively; and the elements of the Γ matrix are given 
by: 
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(a) 

 

(b) 

Fig. 1. (a) Uniaxial chiral slab. The axis of uniaxial slab is
parallel to the z-axis and the interfaces. (b) Biaxial chiral slab.
The chirality appears in both x and z directions. 
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where r subscript for ε and μ indicates relative 
permittivity and permeability, respectively; and c and ω 
are the speed of light in vacuum and the angular 
frequency, respectively. We may define a 4×4 transition 
matrix Φ that relates the transverse components of 
electric and magnetic fields at the two boundaries of the 
slab 

( 0) ( )
( 0) ( )

T T

T T

z z t
z z t

=
= =

= =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

E E

H H
Φ                                 (11) 

Similar to state-space equations in linear control 
systems [29, 30], it can be easily seen that the transition 
matrix Φ is given by 

-= te ΓΦ                                                                       (12) 

For the computation of the matrix, many methods 
have been proposed [29] such as expansion of Φ in a 
power series, Cayley-Hamilton theorem, expm 
command in MATLAB, etc. 

By introducing the reflection and transmission 
matrices, T and R, we can write: 

(0) (0) (0)xx xyr i i
T T T

yx yy

R R
R R

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

E R E E                     (13) 

( ) (0) (0)xx xyt i i
T T T

yx yy

T T
t

T T
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

E T E E                     (14) 

where the superscripts i, r, and t denote the incident, 
reflected, and transmitted field, respectively. If the 
transition matrix Φ is partitioned into four 2×2 
submatrices, such that 

( ) ( )
( ) ( )

1 22 2 2 2

3 42 2 2 2

,× ×

× ×

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

Φ Φ
Φ

Φ Φ
                                     (15) 

Equation (11) may be rewritten as 

1 2(0) (0) ( ) ( )i r t t
T T T Tt t+ = +E E Φ E Φ H               

(16) 

3 4(0) (0) ( ) ( )i r t t
T T T Tt t+ = +H H Φ E Φ H             (17) 

By introducing wave impedance matrix Z0 to relate 
the electric and magnetic fields in the free space 
regions, we can write 

0(0) Z (0),i i
T T=E H  

0(0) Z (0)r r
T T=−E H  and 0( ) Z ( )t t

T Tt t=E H , where 

0

0

0

0

0 0

0

0 cos

=

0
cos

θ
μ
ε

μ ε
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

Z                               (18) 

Substituting aforesaid equations in Eq. (17), we 
have: 

1
3 0

1 1
0 0 4Z (0) Z (0) ( ) Z ( )i r t t

T T T Tt t−− −− = +E E Φ E Φ E      (19) 

Using Eqs. (16) and (19) and by considering Eqs. 
(13) and (14), one can write 

( )[ ]
( )[ ]

1 0 2 0 3 0 4

1

1 0 2 0 3 0 4

= Z Z Z

Z Z Z
−

+ − +

+ + +

R Φ Φ Φ Φ

Φ Φ Φ Φ
                (20) 

( )[ ] 1

0 1 0 2 0 3 0 4= 2 Z Z Z Z
−

+ + +T Φ Φ Φ Φ                 (21) 

Once R and T matrices were determined, co- and 
cross-reflection and transmission coefficients could be 
identified. For instance, according to Fig. 1, the co- and 
cross-reflection coefficients of the biaxial chiral slab at  
z = 0 can be expressed as the following 
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The reader should note that the main difference 
between this method and conventional methods that use 
full wave analysis is that here state transition matrix is 
used. In fact, in this method it is not necessary to obtain 
eigen-polarizations of the uni- or biaxial chiral medium 
through solving complex wave equation and then using 
boundary conditions which results in deriving complex 
nonlinear equations. To conclude, although these 
different approaches are equivalent generally, the 
proposed method allows avoiding nonlinearity and 
complexity of the problem, and may result convenient 
from computational and practical points of view. 
Briefly, this procedure can be summarized as follows: 

• Consider Γ matrix using Eq. (10). 

• Compute Φ matrix using Eq. (12). 

• Obtain R and T matrices using Eqs. (20) and 

(21). 

 
3 Numerical Examples and Results 

In this section, three examples are provided to 
illustrate the applicability of the proposed method for 
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analyzing scattering from uni- or biaxial chiral slabs. In 
these examples, special cases are considered in order to 
compare the obtained results with those of previously 
published methods and achieve the validity of the 
presented method. 

In these numerical examples, we use expm command 
based on Pad´e approximation with scaling and squaring 
to save computational time in handling the exponential 
of the matrices in MATLAB. 
 

3.1  Example 1 (Uniaxial Chiral Slab) 
As the first example, consider a uniaxial chiral slab 

with thickness of t = 5 mm, and the electromagnetic 
parameters εx = εy = 3ε0, εz = 4ε0, μx = μy = μz = μ0, and 
κz=1.5. Assume a plane wave with unity amplitude and 
excitation frequency 10 GHz obliquely illuminates the 
slab. The reflected and transmitted power (|R|2 and |T|2) 
versus the angle of incidence obtained by the proposed 
method and the exact results presented in [28] are 
shown in Fig. 2. Comparison between the results, 
illustrates the good behavior of the proposed method. 
 
 

(a) 
 

(b) 
Fig. 2. (a) The reflected power and (b) the transmitted power, 
as a function of incident angle for uniaxial chiral slab. 
 

3.2  Example 2 (Biaxial Chiral Slab) 
In the second example, to show robustness of the 
presented method, the problem of reflecting of a plane 
wave from an infinite perfect electric conductor (PEC) 
or perfect magnetic conductor (PMC) backed biaxial 
chiral slab is considered. 

Assuming a PEC boundary condition at z = t, we 
consider ( ) 0t

T t =E
 
 and then rewrite Eqs. (16) and (19). 

After simple matrix manipulations, we obtain: 

[ ][ ] 1

2 0 4 2 0 4= Z Z −
− +R Φ Φ Φ Φ                              (26) 

Furthermore, assuming a PMC boundary condition 
at z=t, ( ) 0t

T t =H  should be considered and Eqs. (16) 
and (19) should be rewritten. In this case, the matrix R 
may be found through simple matrix manipulations. 

[ ][ ] 1

1 0 3 1 0 3= Z Z −
− +R Φ Φ Φ Φ                              (27) 

Assume a plane wave with unity amplitude and 
frequency 1 GHz obliquely illuminates a PEC or PMC 
backed biaxial chiral layer with thickness t=5 cm whose 
constitutive parameters are εx=εy=2ε0, εz=5ε0, μx=μy=3μ0, 
μz=μ0, and κx=κz=2. 
 
 

(a) 

(b) 
Fig. 3. The reflected power as a function of incident angle for 
PEC backed (a), and PMC backed (b) biaxial chiral slab. 
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Fig. 3 shows the reflected and transmitted power 
obtained from the proposed method versus the angle of 
incidence. In order to verify the accuracy, the obtained 
results by the Notation of Propagators (NP) method 
[31], which is based on cascading thin linear layers, are 
also illustrated in Fig. 3. Apparently, there is an 
excellent agreement between the results of the two 
different methods. 
 
4 Conclusions 

This paper presents an analytic formulation for 
reflection and transmission problems involving uni- or 
bi- axial chiral layers. In the presented method, a 4×4 
transition matrix that relates the transverse components 
of electric and magnetic fields at the two boundaries of 
the slab is employed and is combined with the boundary 
conditions. The presented approach is very systematic 
and it can be simply implemented in programming 
languages supporting matrix manipulations such as 
MATLAB. The validity of the presented method is 
achieved by providing some numerical examples and 
comparing the obtained results with those of other 
available methods for two special cases. As an 
interesting, significant, and applicable property of the 
presented method, it is not necessary to specify the 
eigen-polarizations of the uni- or bi- axial chiral layer. 
In addition, the presented method can be used to 
analysis of the reflection and transmission problems 
involving more complex bianisotropic layers. In fact, 
the Γ-matrix should be only calculated for more 
complex layers and the next steps to obtain reflection 
and transmission matrices are the same procedure 
describing in this paper. 
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